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Abstract
The purpose of this study is to examine the effi cacy of a bias-detection 

method within the general linear model (GLM) framework. I evaluated 

detection capability of a GLM-based method by comparing it to a con-

fi rmatory factor analysis likelihood ratio (CFA-LR) test using simulation 

data. The GLM method works fairly well for detecting uniform bias 

under various conditions. Although nonuniform bias detection was 

somewhat poor under certain conditions, the overall bias-detection pat-

tern of the GLM and CFA-LR methods was quite similar. Across all 

conditions, the false-positive rates of the GLM were less than the 

expected value of alpha=.05. Considering its simplicity and fl exibility, 

the GLM method is a powerful and valid alternative for detecting bias 

when evaluating measurement equivalence.

Key words: DIF, uniform bias, nonuniform bias, MACS, measurement 

equivalence/invariance, Monte Carlo simulation

 Over the past decade, the amount of attention paid to measurement 

equivalence by the cross-cultural research community has been growing 

(Byrne & Watkins, 2003; Meade & Lautenschlager, 2004). The establish-

ment of instrument equivalence is imperative for any group comparison, 
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but it is particularly critical in cross-cultural comparative studies. Cross-

cultural investigation is a unique research process that entails a variety of 

theoretical and methodological challenges, including: translating assess-

ment instruments into the target language equivalently (Orlando & Mar-

shall, 2002), selecting comparable samples or sub-cultures across coun-

tries (Häder & Gabler, 2003) and controlling for culturally conditioned 

response styles (Kankaraš & Moors, 2011). These challenges can be 

potential noise or bias for equivalent measures. Cross-cultural research-

ers cannot readily assume the comparability of test scores in such a way 

as intracultural survey (Welkenhuysen-Gybels, Billet, & Cambré, 2003). 

Without confi rming that instruments are bias-free and function equally 

across cultures, survey results may be ambiguous at best and misleading 

at worst (Steenkamp & Baumgarter, 1998).

 For example, since Markus and Kitayama proposed the idea of self-

construal in 1991, this concept has been used in many cross-cultural 

studies. However, some researchers have viewed the validity of self-

construal research with skepticism (Levine et al., 2003; Matsumoto, 

1999). Based on a meta-analytic review, Levine et al. (2003) reported 

that cultural differences in self-concepts across published articles are 

weak, inconsistent, or non-existent. They claimed that some cross-cul-

tural studies do not support the self-construal theoretical perspective 

that people in the US are higher in independent self and lower in inter-

dependent self than their Asian counterparts (e.g. Gudykunst et al., 
1996) and that some studies even suggest the existence of cultural differ-

ences in self-concepts that are the opposite of those predicted by the 

theory (e.g. Kleinknecht et al., 1997).

 Research fi ndings that are inconsistent with, or even contradictory to, 

theories may be the result of measurement artifacts. Previous cross-cul-

tural studies rarely evaluated their measurement equivalence of the 

assessment instruments, as was shown in the case of self-construal 

research. When assessments do not have measurement equivalence, it is 

diffi cult for cross-cultural investigators to meaningfully interpret 

observed score differences. That is, score differences may refl ect true 

cultural differences between groups, or they may be the result of differ-
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ent relationships between latent and observed variables across the groups 

that are being compared. Therefore, measurement equivalence is indis-

pensable when comparing and contrasting cultures across demographic 

groups via test scores, and true cultural differences must be distin-

guished from measurement artifacts.

 Currently, there are two approaches to researching and assessing mea-

surement equivalence: confi rmatory factor analysis (CFA) and item 

response theory (IRT). Both approaches are based on sophisticated sta-

tistical models and are the most promising, state-of-the-art methods. 

However, for researchers who face the “constraints” of real research sit-

uations, these approaches are not always ideal. The two methods, par-

ticularly the IRT-based method, usually require large samples for effi -

cient parameter estimation. Additionally, statistical software, such as 

LISREL (Jöreskog & Sörbom, 2002) or MULTILOG (Thissen, 1991), 

is required to estimate the parameters and to fi t the model to the data. 

Furthermore, conducting an item analysis using these advanced tools is 

not always a straightforward task.

 The present simulation study explores an alternative way to examine 

measurement equivalence. Using the general linear model (GLM) 

framework, this study focuses on evaluating measurement equivalence by 

detecting differential item functioning (DIF). Given its simplicity and 

practicality, this regression-based DIF detection method is an effi cacious 

alternative that cross-cultural investigators can reasonably substitute for 

CFA- or IRT-based methods.

Psychometric properties of equivalent measures
 In general, measurement equivalence is defi ned as the invariant opera-

tion of test items because they are perceived and interpreted in the same 

way across groups being compared (Byrne & Watkins, 2003). A more 

elaborate defi nition of measurement equivalence accounts for the struc-

tural relationship between scales and psychological constructs. That is, 

measurement equivalence is tenable when the observed item scores and 

the latent traits that the items measure are identical across the compared 

groups (Drasgow, 1984). Measurement equivalence is often viewed as an 
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intrinsic property of the instrument. However, it is more practical to 

view measurement equivalence as the interaction between instrument 

features and cultural-group characteristics (van de Vijver & Leung, 

1997).

　“Bias” is a closely related concept because it is a factor that threatens 

measurement equivalence. Theoretically, equivalence and bias are 

opposed to one another because observed scores become equivalent 

when they are unbiased (van de Vijver & Leung, 1997). Therefore, bias 

can be a “cause” that affects the establishment of equivalence between 

measures. Unlike reliability indices, such as Cronbach’s alpha, which 

explain random measurement error, bias leads to systematic measure-

ment inaccuracy, which can be replicated over repeated measures (Mill-

sap, 2011). A reliable test is not necessarily unbiased because a highly 

reliable but biased test will consistently yield inaccurate measurements 

over repeated measures.

 As it is more inclined to measurement artifacts at the item level, “dif-

ferent item functioning” (DIF) is referred to as “item bias.” Researchers 

prefer this term because “bias” has a negative connotation, as it can 

imply unfairness or prejudice caused by inherent test item fl aws (Angoff, 

1993). DIF is a value-free term that merely implies something about the 

statistical fi ndings of different test-item functions across groups (Millsap, 

2011). For the purpose of this simulation study, DIF and bias will be 

used interchangeably to imply different test item performance across 

cultural groups.

 The current psychometric theory of bias detection relies on the 

matching principle for diagnosing a biased test item (Angoff, 1993). 

According to this principle, an item is biased when a respondent with 

the same ability or attribute but in a different cultural group gives a dif-

ferent response to the test item. By matching or conditioning based on 

the profi ciency that the items measure, this approach allows researchers 

to evaluate the function of the studied item after controlling for group 

differences in ability or attributes. This matching variable can be either 

internal or external; an internal matching variable includes the total test 

score, which is the most widely used criterion, even though it is poten-
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tially subject to circularity because the criterion is derived from the test 

itself (Longford, Holland, & Thayer, 1993).

Observed variable models for assessing measurement equiva-
lence
 The CFA- and IRT- based methods, i.e., the two aforementioned bias 

detection, are considered “latent variable models” because they are 

designed to estimate psychological and latent constructs. Both techniques 

diagnose biased items by matching respondents from different cultural 

groups on estimates of psychological attributes. They differ in the nature 

of the relationship between the item scores and the underlying latent 

constructs. The CFA-based approach estimates linear relationships, 

whereas the IRT-based method assumes nonlinear relationships.

 Several non-latent observed variable models have also been developed. 

A popular method is the Mantel-Haenszel procedure (Holland & 

Thayer, 1988), which has been thoroughly studied over the past several 

decades. It was conceptualized and developed especially for detecting 

item bias in educational test data, and it mainly focuses on dichotomous 

responses such as “correct” or “incorrect” and “right” or “wrong.” 

Using the total score as a proxy matching variable, this method fi nds 

item bias by identifying whether individuals with the same ability level 

but different cultural backgrounds have an equal chance of success on an 

item. Despite its popularity, the Mantel-Haenszel procedure has several 

limitations: the method can mainly handle only dichotomous response 

data, and it can only detect uniform bias (Swaminathan & Rogers, 1990).

 Another observed variable model has been proposed by van de Vijver 

and Leung (1997). This model uses an analysis of variance (ANOVA) 

framework and is therefore applicable to Likert-type item responses. 

Historically, the ANOVA bias-detection technique was fi rst developed 

by Cleary and Hilton (1968), but was later found to be fl awed (Camilli & 

Shepard, 1994) because it does not follow the “matching principle,” 

which states that item bias is determined relative to the overall ability or 

attribute level. Van de Vijver and Leung’s ANOVA approach uses the 

total score as a proxy for the matching variable, which is similar to the 
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Mantel-Haenszel procedure.

 To illustrate this point, consider that the total score is divided into 

several score groups under the assumption that the score is continuous. 

A two-way ANOVA with two categorical factors, i.e., a “score group” 

and a “cultural group,” and an interaction term is performed on each 

item. When the interaction between the “score group” and “cultural 

group” is statistically signifi cant, an item is considered to have nonuni-

form bias. A signifi cant main effect of “cultural group” indicates uni-

form item bias, and a test for the main effect of “score group” is of no 

particular interest. Van de Vijver and Leung’s ANOVA bias-detection 

model has a number of positive attributes: First, it is based on the 

matching principle that a biased item is determined in relation to the 

person’s ability level. Second, the approach can detect both uniform and 

nonuniform item bias. Third, the ANOVA approach can be applied to 

polytomous Likert-type items.

 In this ANOVA model, the formulation of score groups is crucial, and 

it appears to signifi cantly determine to bias-detection success. As I pre-

viously explained, the method divides the total score into several score 

groups, but the defi nition of score groups is a rather ambiguous and 

uncertain process. Based on the premise that refi ned score groups allow 

for more powerful statistical analyses, van de Vijver and Leung (1997) 

make the following recommendations for forming score groups: (a) score 

groups should have at least 50 subjects and (b) the number of subjects 

included in groups should be nearly equal. However, these recommenda-

tions are not easy to follow in actual studies. The latter recommendation 

is particularly diffi cult because subjects’ responses for some options are 

often clustered around the overall mean.

 One of the diffi culties with score groups stems from categorizing the 

total score into several score groups. The dichotomizing of a continuous 

variable reduces the amount of variance that can be accounted for and 

limits the statistical power of the analysis. Cohen (1983) discusses the 

cost of dichotomizing variables and suggests that it results in a loss of 

one-fi fth to two-thirds of the variance that may be accounted for by the 

original variables. Moreover, as a result of dichotomizing normally dis-
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tributed variables, it induces measurement error and hence, erroneous 

description of the data “because all the cases coded as being at a single 

value of the artifi cial dichotomy actually have substantially different true 

scores” (Cohen, Cohen, West, & Aikin, 2003, p. 298). The ANOVA 

model is simple and easy to use, which increases the stability and capa-

bility of the bias analysis, but the continuous nature of the total score be 

retained and used intact. One way to approach this requirement is to 

model the total score as a continuous variable in the GLM framework, 

which will be discussed in the following section. 

General linear model
 GLM is an umbrella term that refers to linear models such as 

ANOVA, analysis of covariance (ANCOVA), or regression. In a GLM, 

the dependent variable, which is usually a continuous variable, is linearly 

combined with more than one independent variable. It is customary to 

call the analysis an ANOVA if independent variables are categorical and 

a multiple regression (MR) if the independent variables are continuous. 

When independent variables are both continuous and categorical, the 

analysis can be called an ANCOVA, an aptitude treatment interaction 

(ATI), or a trait treatment interaction (TTI). These models share a 

common goal, which is to “adjust” or “equate” categorical variable 

groups with respect to the relevant continuous variables that differ 

between them (Pedhazur, 1997). In an ANCOVA model, the relevant 

continuous variable is referred to as a covariate or concomitant variable.

 The present study uses a linear model with continuous and categorical 

variables to test DIF. The model testing bias for item i is given by the 

following equation:

 Οi = μi + αi + βi + αiβi + εi

where Oi is the item response, μi is the overall mean, αi is group mem-

bership, βi is the total score, αiβi is the group membership and the total 

score interaction term, and εi is the error term. The error is normally 

and independently distributed with a mean of zero and constant vari-
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ance. Statistical tests are conducted on three regression weights: αi, βi, 
and αiβi. The βi weight, the psychological trait tapped by the total score, 

represents the degree to which individuals with higher total scores tend 

to choose higher response options on a given item. Because it is almost 

always statistically signifi cant, less interest is given to this weight, as it is 

the case in van de Vijver and Leung’s ANOVA model. When the αi 

weight differs signifi cantly from zero, the mean of item response is sta-

tistically different between groups after controlling for the effect of βi in 

the equation given above. This is the case with uniform bias because at 

the trait level, the item response of one group is signifi cantly higher or 

lower than that of the other group. The presence of nonuniform bias is 

indicated when the interaction term, αiβi, is statistically signifi cant, 

which is the case when the relationship between the item and the con-

struct varies across groups, thus indicating that the item is more salient 

for one group than another (Orlando & Marshall, 2002).

 In this study, I will test the GLM-based method for bias detection. 

The linear model that I will test uses the total score as a continuous 

variable without grouping responses into several score group categories, 

which is an extension of the perspective of van de Vijver and Leung’s 

ANOVA model (1997). Using simulation data, I examine the GLM 

model’s effectiveness by comparing it to the CFA approach, which is 

one of the most promising techniques among current, state-of-the-art 

methodologies.

Method
 This study uses simulated data. Monte Carlo simulation studies enable 

us to “know” parameters in advance so that we can test how effectively 

detection methods fl ag biased items. In this study, a 20-item test with 5 

category options for the reference and focal groups is simulated with two 

sample sizes: 500 and 1,000 per group. This 20-item unidimensional test 

has 4 biased items and 16 unbiased items. The number of biased items 

is minimized because of the recommendation of Harwell and colleagues 

(1996) that the ratio of DIF items to unbiased items should be less than 

one-fi fth. The sample size varies (N=500 =and N=1,000) because similar 
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simulation studies (e.g. Stark, Chernyshenko, & Drasgow, 2006) suggest 

that the sample size impacts the model’s ability to detect biased items.  

Data properties
 The simulation data were obtained using the computer program 

WINGEN2 (Han & Hambleton, 2007). This program generates data 

using several IRT models. To obtain polytomous Likert-type data, the 

graded response model (GRM) was utilized. GRM is a polytomous IRT 

model that was developed by Samejima (1968).

 I undertook the data-simulation process using the following three 

steps: (1) generating ability values, (2) generating item-parameters val-

ues, and (3) generating item-response data. In this study, ability param-

eters were fi xed with a mean of zero and a standard deviation of one for 

the reference and the focal groups to avoid the risk of confounding the 

results with theta differences.

 To obtain item parameter values, I fi rst generated item parameters for 

the reference group. Item location parameters (bjk) were randomly sam-

pled from a normal distribution with a mean of zero and a standard 

deviation of one. Item discrimination parameters (aj) were randomly 

sampled from a uniform distribution with a range of 1.0 to 2.0. Location 

and discrimination parameters are analogous to factor loadings and inter-

cepts in factor analytic models (Ferrando, 1996).

 Some item parameters were then changed to create DIF items in the 

focal group. Via modifi cation of the aj or bjk values in the reference 

group, the fi rst four items in the focal group were simulated to show 

bias. Item 1 and Item 2 are nonuniform DIF items for which only item 

discrimination parameters were changed. For Item 3 and Item 4, only 

the location parameters were arranged to show uniform DIF.

 In this study, the magnitude of the differences between biased-item 

values was manipulated to be 0.5 (the low-biased condition) or 1.0 (the 

high-biased condition). Item 1 and Item 3 were low-magnitude DIF 

items. Item 1’s discrimination parameter and Item 3’s 4 location param-

eters were reduced by 0.5 from the simulated item values in the refer-

ence group. Similarly, the values for Item2’s discrimination parameter 
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and Item4’s 4 location parameters in the focal group, which were high-

magnitude biased items, were obtained by subtracting 1.0 from the cor-

responding item values in the reference group. Aside from these biased 

items, the rest of the item values were exactly the same in the reference 

and focal groups (see Table 1).

 This study also manipulated the sample size by creating two sample 

conditions, i.e., a small-sample condition (N=500) and a large-sample 

condition (N=1,000), for the reference and focal groups. These sample 

sizes were selected in accordance with past studies (e.g. Meade & Laut-

enschlager, 2004). Finally, twenty-fi ve of item-response data were repli-

cated for each sample-size condition based upon these simulated item 

and ability values.

Data analysis
 I examined the proposed GLM approach’s ability to detect biased 

items by comparing it with the CFA method. The GLM approach was 

analyzed using the GLM function implemented in the SPSS computer 

program (SPSS, 2006). The dependent variable was the individual 

item’s response, the “factor” was group membership (i.e. the reference 

or focal groups) and the “covariate” was the total score. A signifi cant 

interaction between “covariate” and “factor” indicates a nonuniform 

DIF because the item has higher (or lower) discrimination in one group 

than in the other. When the item score was not invariant across groups 

(based on the total score), a uniform DIF was revealed by a signifi cant 

main effect of “factor.” For all signifi cant tests, the Type-I error was 

controlled by setting alpha=.05.

 In observed variable methods, biased items must be fi ltered out from 

the internal matching variable, as it is a common practice to “purify” the 

total score with preliminary item screening in the Mantel-Haenszel pro-

cedure (Millsap, 2011). Sixteen unbiased items were used to obtain the 

total score because the biased items were known in advance. To calculate 

the score, I summed the item responses from these unbiased items. 

However, the studied item must be included in the total score regardless 

of whether it is biased. A past simulation study using the Mantel-
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Haenszel procedure suggests that the total score exclusive of the studied 

item was likely to indicate DIF even though no bias was actually present 

(Donoghue, Holland, & Thayer, 1993). As a result, when I examined the 

four biased items, the item responses from the studied and biased items 

were added to the total score that was calculated from the sixteen unbi-

ased items.

 The same data were also analyzed with a confi rmatory factor analysis 

likelihood ratio (CFA-LR) test. For this analysis, I utilized the simulta-

neous and multigroup function implemented in Amos 18.0J (Arbuckle, 

2009). Following the procedures outlined by Oort (1998) and further 

elaborated by Chan (2000), biased items were examined with a series of 

likelihood ratio tests. Using chi-square statistics, I compared a restricted 

model in which I imposed equality constraints on item parameters across 

group with a baseline model. The baseline model had no constraints on 

parameters except for the following, which were used for identifi cation 

purposes: Item 19, an unbiased item, was used as a reference indicator 

whose factor loading was set to 1, and the intercept was equalized across 

groups. When testing bias for Item 19, I used another unbiased item 

(Item 20) as the reference indicator. Similarly to the simulation in the 

data generation, the mean and standard deviation of the baseline model’s 

latent factor were, respectively, fi xed at zero and one for both groups. 

When a signifi cant difference between the baseline and restricted mod-

els’ chi-square values is observed, there is invariance where the restricted 

model’s equality constraints are placed. Therefore, uniform bias was 

indicated when restricted models with equal intercepts signifi cantly 

departed from their baseline models. Similarly, nonuniform bias was 

indicated when restricted models with equal factor loadings were signifi -

cantly different from the baseline model.

Results
 Table 2 shows the number of biased and unbiased items detected by 

the GLM and CFA-LR approaches at alpha=.05. For example, in the 

N=500 condition, the number of uniform DIF items detected was 3 out 

of 25 replications (12.0%), which was simulated to show a low-magni-
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tude (i.e. 0.5), uniform bias for Item 1. The total number of unbiased 

items is 400 over 25 replications because each replication has 16 unbi-

ased items (16 items × 25 replications). Again, in the N=500 condition, I 

falsely detected 7 unbiased items as biased items, which is a 1.8% false-

positive rate.

 The general fi ndings of the GLM method were as follows: (a) detec-

tion rates in the large-sample condition were higher than in the small-

sample condition, (b) items with a large amount of bias were fl agged 

more than items with a small amount of bias, (c) nonuniform DIF items 

were better detected than uniform DIF items, and (d) false-positive rates 

were less than 5% and about equal across all conditions; however, they 

tended to appear to be more infl ated for nonuniform DIF items, particu-

larly when the sample size was large. I observed results that are similar 

to (a), (b), (c) and (d) in the CFA-LR approach. Overall, the GLM and 

CFA-LR methods exhibited remarkably similar bias-detection patterns.

Differences between two methods
 When I looked closely at the results, I noticed interesting similarities 

and differences between the GLM and CFA-LR methods. For uniform 

DIF items, I found perfect detection using both approaches. They are 

both successful at detecting uniform DIF (even with the severe and 

unfavorable conditions of the low-magnitude and/or small-sample condi-

tions).

 For the results of nonuniform DIF items, the power was decreased in 

both approaches, although I observed slight differences across sample 

sizes and bias magnitudes. In the small-sample size and low-magnitude 

conditions, the detection rate of the GLM was 12%, which was slightly 

lower than that of the CFA-LR approach (16%). The detection rate for 

nonuniform DIF improved with the larger sample size. The GLM 

detected 10 biased items out of 25 (40%), which again was slightly lower 

than the CFA-LR for the same condition (48%). The power also 

improved as the bias grew. For the large amount of nonuniform DIF 

items, both the GLM and CFA-LR methods exhibited perfect detection 

except in the small-sample-size condition for the GLM, where the mod-
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els detected 24 out of 25 nonuniform DIF items (96%).

 Overall, the GLM and CFA-LR methods have a fairly similar effi cacy 

for detecting nonuniform bias. The nonuniform DIF detection accuracy 

seems to be infl uenced by sample-size or bias-magnitude factors. In con-

trast to the uniform bias, the nonuniform DIF detection capability dete-

riorated in both approaches. The power to detect nonuniform DIF was 

reduced, particularly in the small-sample and low-magnitude bias condi-

tions. Although similar patterns were observed, this trend was more 

pronounced in the GLM approach than in the CFA-LR approach.

False-positive rates
 In this study, the total number of unbiased items tested was 400 as a 

result of testing 16 unbiased items over 25 replications. The false-posi-

tive rates were all less than 5% with a range from 1.3% to 4.3%. Although 

they were all under the expected value, the type-I error rates for uni-

form DIF detection were slightly higher than those for nonuniform DIF 

detection with the GLM method. The GLM the error rates for uniform 

DIF were also slightly infl ated compared with CFA-LR. The sample 

size has no major impact on error rates, although the false-positive rates 

of the GLM appear to be slightly increased in the large-sample condi-

tion.

Discussion
 For cross-cultural researchers, measurement equivalence has been a 

central concern for many years. Without knowing the psychometric 

properties of test items, the results of cross-cultural comparisons are 

ambiguous and perhaps misleading. Although these measurement issues 

are important, a preliminary item-bias analysis is not yet a prevalent 

practice in the cross-cultural research community, partly because of 

inherent diffi culties in conducting an item analysis. Some researchers 

have recommended conducting an item analysis using latent-variable 

models, such as CFA or IRT (Meade & Lautenschlager, 2004; Stark, 

Chernyshenko, & Drasgow, 2006). However, these models may not 

always to be the best choice for applied researchers who face various 
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challenges in actual studies. Some of these challenges include the follow-

ing: Latent-variable models often require many subjects for stable 

parameter estimation, and specialized commercial computer software, 

such as LISREL and MULTILOG, is needed to fi t models to the data, 

and above all, some psychometrics skills and knowledge are required 

when using these statistically advanced models.

 In this study, I used the liner model framework to explore a simpler, 

more user-friendly alternative for bias detection. Based on simulated 

data, I examined the accuracy of the proposed GLM method by com-

paring it to the accuracy of the CFA-LR method. Overall, this study 

demonstrated the effi cacy of the GLM method; its bias-detection capa-

bility appears to be satisfactory in most conditions, which was quite 

similar to the CFA-LR results. Across various conditions, the type-I 

error rates were all near or below the expected alpha=.05 value. I high-

light some of the characteristics of the GLM procedure below.

 I have demonstrated that the GLM and the CFA-LR both perfectly 

detected uniform item bias. Their detection capability for uniform DIF 

seems not to be infl uenced by a sample-size or bias-magnitude decrease. 

Therefore, GLM, similarly to CFA-LR, detected uniform bias fairly 

well. Both approaches also demonstrated similar patterns for nonuniform 

bias detection. Overall, both approaches performed very well with high-

magnitude and large-sample conditions. However, a reduction of the 

sample size and bias magnitude leads to decreased power for detecting 

nonuniform DIF using both methods, and the trend appears to be more 

pronounced for GLM than for CFA-LR.

 Although the nonuniform-bias-detection capability using the GLM 

and CFA-LR is rather poor under some conditions, these results are 

somewhat expected considering similar past simulation studies. For 

example, in Wanichtanom’s Monte Carlo study (2001), where the area 

procedure (Raju, 1988) was used to create bias items, the overall detec-

tion rate of CFA-LR for nonuniform bias was 56%. For the sample-size 

condition where N=1,000, the detection rates differed for nonuniform-

bias magnitudes that were low (approximately 0.12), medium (approxi-

mately 0.38), and high (approximately 1.10) (36%, 64%, and 69%, respec-
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tively). In another simulation study, this time for the logistic regression 

procedure (Swaminathan & Rogers, 1990), approximately 50% of non-

uniform bias items were detected in a small-sample (N=250), short-test 

(40 items) condition, and approximately 75% were detected in a large-

sample (N=500), long-test condition (80 items). This study’s signifi cance 

level was set at alpha=.01. 

 The statistical power for detecting interaction effects has long been a 

concern in social and behavioral sciences. In the ANOVA or regression 

analysis, the detection of interactions is much more diffi cult than the 

detection of main effects (Cronbach & Snow, 1977; Cohen, Cohen, 

West, & Aikin, 2003). As with the detection of nonuniform bias, the 

nature of the interaction seems to impact the statistical power. For 

example, I mentioned that the overall detection rate for nonuniform bias 

was 56% in Wanichtanom’s simulation work (2001). However, consider-

ation of the nature of the interaction reveals a completely different pic-

ture, as the detection rates for ordinal nonuniform bias were much 

higher the detection rates for disordinal nonuniform bias. For the 

medium- to high- nonuniform-bias magnitudes, perfect or nearly perfect 

detection was observed. Even for low-magnitude nonuniform items, 36% 

to 64% of these ordinal biased-items were detected. On the other hand, 

the detection rates for disordinal nonuniform bias were quite low. Over 

25 data replications and 3 bias-magnitude conditions, 2 items (8%) in the 

low-, 0 item (0%) in the medium-, and 2 items (8%) in the high-magni-

tude conditions were detected. Lower power for nonuniform bias detec-

tion was also indicated in another logistic regression procedure simula-

tion study. DIF items with medium diffi culty where item characteristic 

curves from two groups that intersected in the middle range of the abil-

ity parameter were diffi cult to detect (Rogers & Swaminathan, 1993). 

These results indicate that the nature of the interaction impacts the abil-

ity to detect nonuniform bias. Further simulation work will be needed to 

identify how the form of bias affects the statistical power for detecting 

nonuniform bias with the GLM method.
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Advantages of the GLM method
 The GLM approach has a number of positive features in addition to 

basic functional advantages, such as the identifi cation of both uniform 

and nonuniform types of bias. First, the GLM approach is fl exible in its 

modeling; it assumes that the total score is an internal criterion for fl ag-

ging bias. Although the internal criterion method is popular, it is also 

potentially circular (Camilli & Shepard, 1994). Furthermore, the use of 

an internal criterion is, by defi nition, “self-norming” (Longford, Hol-

land, & Thayer, 1989), which allows us to identify only relative discrep-

ancies in item properties across groups because there is no absolute way 

to fi lter out biases from other test items. To avoid these potential prob-

lems of the internal criterion method, the incorporation of an external 

criterion is necessary. The GLM modeling method is fl exible and can be 

easily expanded to include other external ability criteria.

 Additionally, as a linear-model application, the GLM approach offers 

effect-size estimation. The provision of effect-size measures is useful for 

evaluating the “practical signifi cance” of biased items. An interpretable 

measure of the bias magnitude is also needed in DIF research because 

the sensitivity of a statistical hypothesis test depends on sample size 

(Potenza & Dorans, 1995). In GLM bias detection, bias magnitudes can 

be evaluated through R2 difference tests. Starting with the baseline 

model, where only the matching variable (i.e. the total score) is modeled, 

we can examine incremental amounts of variance that are explained by 

the membership variable and interaction term. As has been shown in 

studies on the role of effect size measures in the logistic regression DIF 

procedure (e.g. Jordoin & Gierl, 2001), the availability of effect size 

measures greatly enhances the practicality of the GLM procedure.

 Another useful feature of the GLM method is the ability to search for 

anchor items prior to the implementation of a more sophisticated bias 

analysis, such as CFA-LR or IRT. The LR test approach is more pow-

erful than the bias indices approach (Orlando & Marshall, 2002), but 

success with the LR test approach depends on the establishment of sta-

ble anchor items (Millsap, 2011). Several iterative procedures have been 

proposed to search for anchor items for multigroup CFA (e.g. Rensvold 
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& Cheung, 2001). However, these procedures require multiple iterations 

of signifi cance testing and thereby carry a heightened risk for type-I 

errors. The iteration process requires several model comparisons, and 

there is some uncertainty regarding the rules for accepting or rejecting 

models (Millsap, 2011). The GLM method is a simple but powerful 

alternative that does not entail laborious, iterative processes to search for 

anchor variables. In fact, prior to conducting IRT-based DIF detection, 

Orlando and Marshall (2002) applied logistic regression procedures to 

fi nd anchor items, which worked fairly well in detecting DIF items in 

the subsequent IRT analyses. As I previously mentioned, the current 

GLM-based bias analysis is theoretically and methodologically equiva-

lent, except for the type of the dependent variables used in the logistic 

regression approach.

Recommendations
 Before concluding, I offer some caveats from a practical viewpoint 

about the total score because it appears that the nature of the total score 

signifi cantly impacts bias-detection capability. The GLM approach uses 

the total score as a proxy for matching subjects who have different cul-

tural backgrounds. This internal matching variable must be “purifi ed” 

prior to use because the use of a total score that includes biased items 

may lead to erroneous results (Doran & Holland, 1993; Holland & 

Thayer, 1988). To fi lter out biased items, Holland and Thayer (1988), 

for example, recommended a two-stage procedure for the Mantel-

Haenszel approach. In this refi nement process, each item is fi rst studied 

using the total score across all items. Then the total score is re-calculated 

without the biased items that were detected during the fi rst stage. This 

refi ned total score will be used as the internal criterion for the bias 

detection that follows. Note that the studied item must be included in 

the total score (Donoghue, Holland, & Thayer, 1993), regardless of 

whether the item is fl agged as biased in the fi rst stage of the purifi cation 

process. Therefore, depending on which item is examined, the total 

score may need to be redefi ned (Millsap, 2011).

 Another concern about the total score is its dimensionality because 
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“the unidimensionality of the matching variable is central to the DIF 

assessment process” (Doran & Holland, 1993, p. 61). The bias-detection 

technique for observed variable methods assumes that the proxy crite-

rion variable refl ects the underlying ability, or aptitude, that the whole 

test intends to measure. For a unidimensional test, which is implicitly 

and explicitly assumed for many statistical bias-detection methods 

(Camili & Shepard, 1994), secondary factors or irrelevant variables 

should be excluded from the total score; otherwise, the bias-detection 

results will be misleading. Consequently, this dimensionality assumption 

has to be confi rmed in the GLM method with a preliminary analysis 

that uses factor analytic techniques (e.g. exploratory factor analysis).

 In conclusion, this simulation study identifi es the effectiveness of the 

GLM method for bias detection and suggests that the bias-detection 

capability of the GLM method is fairly similar to that of the CFA-LR. 

The GLM will be a valid alternative, particularly for the case where 

advanced statistical methods, such as CFA-LR and IRT, are not avail-

able, but further research is also needed to identify how other variables 

such as test length and biased- to nonbiased- item ratio, affect power 

and type-I errors. I hope that this simple, practical bias-detection tech-

nique allows more researchers to easily examine measurement equiva-

lence and enhances the validity of cross-cultural investigations.
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